
soapgate Q! 4.5

FIXES

Multi-threading issue related to NotesViewEntries.ColumnValues()

A multi-threading bug was reported to us, causing a Domino Server 8.5.3 (64bit Windows) to crash

reproducibly when load testing (multiple concurrent calls of) the dbLookupX() and dbColumnX() web

service operations. This is apparently an issue of the NotesViewEntry.ColumnValues() method that of

course is used in both of the above web service operation. The issue is under investigation by IBM.

For the time being we have made a minor code adjustment that will allow the save use of the two web

service operations in a Domino 8.5.3 environment. NotesViewEntry.ColumnValues() will only be

accessed if the web service call has parameters referring to columns. If only fields/items (of documents

shown in the view) are requested, NotesViewEntry.ColumnValues() will no longer be accessed at all. Of

course this work around comes at a performance loss.

We are too still investigating on our end if this is a generic issue with NotesViewEntry.ColumnValues() or

is somehow related to the view design or content shown. And whether this issue has been fixed in LND

9.0.

Subscript out of range in dbFTSearch()

Another issue reported was a subscript out of range error when calling dbFTSearch() where the search

criteria would result in no documents. This issue has been fixed.

Changes & New Features

We have been working on performance on the new version and as part of this we restructured the web

services. Instead of a single web service containing all web service operations, we have split and

grouped them. We now have following web services:

DominoUtilityWebServices This is the same as before containing all web service

operations, except for the Admin Process related ones

added in version 4.

DominoAdminPWebServices All web service operations related to the

NotesAdministrationProcess class.

DominoDocumentsWebServices All Notes document related web service operations.

DominoViewsFoldersWebServices All Notes view and folder related web service operations,

except for dbLookupNames() and dbLookupAllNames().

The latter are now located in

DominoAccessNABWebServices.

DominoAccessNABWebServices All user access, ACL and NAB (names and address book)

related web service operations.

DominoWinCAPIWebServices All web service operations that require Win C-API calls

and are therefore only usable in Domino for Windows

environments.

Please note: some of the operations in the new web services have additional parameters. However, the

operations in the old DominoUtilitiesWebservices are not affected. We kept it backwards compatible.

Following operations in DominoViewsAndFoldersWebServices have additional and or removed

parameters:

dbColumnX()

dbLookupX()

dbFTSearch()

dbViewFTSearch()

dbSearch()

The Cache parameter of all the above operations addresses now a new feature in Release 4.5, which is

data caching. If the parameter is set to true, the computed return value (array) is cached in a Notes

document. The caching follows following logik:

1. If a previous query with the same parameters has been found in the cache, the data stored in

the cache document is returned if it has not been expired yet (5 minutes; until release it is a

fixed value).

2. If no cache document for the same query has been found or it has been found, but was expired,

a new cache document is created or the found one updated with the data of the current query.

 Note: the cache document is only accessable for the authenticated user, who created it. For multi-user

scenarios the cache will not work or will have very little impact respectively. The cache feature is useful

in a very limited set of scenarios only. A real world scenario where this feature has already been

implemented successfully (though still in its Beta phase) is that of barcode scanning devices (all)

synching the same Notes data at periodic schedules. The first synching device causes the data being

read from the Notes databases and creates the cache document. All other devices synch (update) from

the cache. The devices are using a technical user for authentication and hence have all access to the

cache document. Whilst the data sync process for the first device takes about 60 seconds (for about

10,000 Notes documents with an average of 15 fields, totalling to about 1MB of data), all subsequent

sync processes of the other devices are shortened to 30-40 seconds. These timings include storing the

data in local SQLight tables on the device.

Following operations in DominoDocumentsWebServices have additional parameters:

dbSaveDocFields()

dbSaveProfileFields()

Both operations support now a two step operation: saving and reading. After completing the save

operation, the dbReadDocFields() or dbReadProfileFields() operations are called respectively. To allow

control on the list of returned fields, both operations have an additional parameters readFlds (Array). If

the array is empty, dbSaveDocfields() and dbSaveProfileFields() return the UNID or NoteID of the

document / profile created or amended (this is the previous behavior). If readFlds is an array, only fields

listed will be returned. Note: NoteID and or UNID will not be automatically added to the list of returned

fields. To receive either one of them or both, submit $$NOTEID or $$UNID as one of the entries in

readFlds.

Paging for dbLookupX() and dbViewFTSearch()

Whilst dbColumnX() does support paging for some time now, both dbLookup() and dbViewFTSearch()

did not. Both these operations finally support paging.

Improved Notes Richtext support

In previous release we used a Java URL request to get the Domino Server to render a Notes Richtext field

to HTML. This required some Domino (security) settings in the server document to work, despite not

being the best performing method. However, it delivered the so far best results from a fidelity point of

view.

In release 4.5 we managed to use the NotesDocument.ConvertToMime method. This is much faster and

touch less from a configuration point of view. We had of course to add some tweaks to support inline

images and attachments.

Changes from a rendering point of view:

• added support for attachments

• improved support for inline images

• tabbed tables are serialized (all tabs showing below each other)

• sections are serialized

We hopefully will manage to improve on the loss in fidelity related to tabbed tables and sections in

future releases.

soapgateQ! database info

We added a RESTFul service to the soapgateQ! database to provide some XML formatted information

about the database itself and the environment it runs in. By default the service is available to public

users. So no authentication is required.

http://domino.flexdomino.net/soapgateq_4.nsf/database%20info

<?xml version="1.0" encoding="UTF-8"?>

<root>

<soapgateq>

<product>soapgate Q!</product>

<version>4.5</version>

<published format="yyyymmdd">20130902</published>

<copyright>flexdomino.net</copyright>

<license>GNU Affero General Public License Version3</license>

<licenseurl>http://www.gnu.org/licenses/</licenseurl>

<sponsor>Qkom GmbH</sponsor>

<sponsorurl>http://www.qkom.de</sponsorurl>

</soapgateq>

<environment>

<server>CN=flexdomino/O=Flex2Domino</server>

<dominoversion>392</dominoversion>

<database>soapgateq_4.nsf</database>

<sessionuser>Anonymous</sessionuser>

</environment>

<configuration>

<debuglevel>0</debuglevel>

<defaultaccess>1</defaultaccess>

<serversidecode>1</serversidecode>

<base64encoding>2</base64encoding>

<htmloptions></htmloptions>

<htmluser></htmluser>

<forcehttps></forcehttps>

<datetimeformat>ISO8601</datetimeformat>

</configuration>

</root>

soapgateQ! database info

We added a RESTFul service to the soapgateQ! database to provide some XML formatted information

about the database itself and the environment it runs in. By default the service is available to public

users. So no authentication is required.

